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Abstract-This paper treats a liquid-metal motion in an infinitely long, vertical cylinder which is rotating 
about its vertical axis in the presence of a steady, uniform, horizontal magnetic field. The liquid near the 
cylinder wall rotates with the cylinder, but elsewhere the velocity is par&l to the magnetic field. This 
paper also treats a steady, two-dimensional heat and mass transfer problem which qualitatively models 
some aspects of the Czochralski growth of silicon crystals with a uniform, horizontal magnetic field. In 
spite of the strongly asymmetric flow and relatively large values of the Pcclet number, the temperature and 

solutal distributions do not deviate significantly from axisymmetry. 

1. INTRODUCTION 

1~ THE Czochralski process, a single crystal of silicon 
is grown from molten silicon contained in a quartz 
(SiOl) crucible. The melt motion is generally periodic 
or turbulent, and the resultant fluctuations in heat 
transfer from the melt to the crystal create a periodic 
cycle of crystallization and remelting. This cycle pro- 
duces a relatively high microdefcct density in the crys- 
tal [I]. Since molten silicon is an excellent electrical 
conductor, the application of a steady magnetic field 
during crystal growth suppresses turbulence and any 

other periodicity in the melt motion and thus reduces 
the microdefect density in the crystal [2, 31. 

Most experiments and numerical simulations to 
date have focused on the effects of a steady, uniform 
magnetic field which is either vertical and parallel to 
the common vertical axis of the crystal and crucible 
(axial field) or is horizontal and perpendicular to this 
vertical axis {transverse ficid). Initially. axial fields 

seemed to be better because the melt motion, tem- 
perature and solutal distributions remain axisym- 
metric with an axial field. A transverse field which is 
strong enough to suppress turbulence also produces 
a large asymmetry in the melt motion. If the associated 
convective heat transfer produces a large asymmetry 
in the temperature, then a point on the Face of the 
crystal. which is rotating about its vertical axis, will 
experience precisely the periodic fluctuations in heat 
transfer which the magnetic field is supposed to 
eliminate. However, experiments have revealed that 
crystals grown in an axial magnetic field have an 
unacceptably high and extremely non-uniform 
concentration of oxygen [4]. Oxygen enters the melt 
as the crucible is ablated during crystal growth. An 
axial magnetic field strongly suppresses the radially 

outward flow near the crystal face which is driven 
by the crystal rotation and which ensures radially 
uniform distributions of oxygen and other solutes in 
the crystal [5]. On the other hand, crystals grown in a 
uniform, transverse magnetic field have very uniform 
and controllable concentrations of oxygen and 
dopants, and do not have any of the undesirable 
characteristics which would be produced by large 
asymmetries in the temperature or solutal dis- 
tributions in the melt [4, 61. 

The objective of the present paper is to investigate 
the deviations from thermal and solutal axisymmetry 

associated with a strongly asymmetric fluid motion. 
We do not treat the complex, three-dimensional melt 
motion in the actual Czochralski process. Instead we 
treat a two-dimensional model problem which quali- 
tatively reflects some aspects of the Czochralski 
process. The results cannot be used to make any quan- 
titative predictions about the Czochralski process, but 
they do reveal that the asymmetries in the temperature 
and solutal distributions are much smaller than one 
might expect from the strongly asymmetric flow and 
from the magnitudes of the Peclet numbers 
considered. Therefore the results provide some 
insights into the lack of poor characteristics in crystals 
grown in a uniform transverse magnetic field. 

~ihelcic and Wingerath f7] present numerical simu- 
lations ofthe fully three-dimensional melt motion and 
heat transfer in the Czochralski process with a uni- 
form transverse magnetic field. However, they impose 
a strongly asymmetric temperature distribution with 
a hot spot on one side of the crucible and investigate 
the effects of a transverse magnetic field with various 
orientations with respect to the hot spot. Here we treat 
a heat transfer problem whose only asymmetry results 
from the application of the transverse field. 
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NOMENCLATURE 

II dimensionless radius of the thermal and IQ or PP,,, Peclet (pcJ2R ‘/k) or mass Peclet 
solutal sinks (RR’/D) number 

A,,,,,. B,,,,,. C,,,,, coefkients in the q or (iI,, heat or mass Aux at the vertical 
~o~ri~~-~~~~ysl~~~ spectral series cylinder wail 

B magnetic ALIX density of the tmiform. R radius of the cylinder 
horjzontai magnetic ficfd R,, magnetic Reynolds number. it,> rrRR’ 

Bi Biot number. ilR’:k S/l Sherwood number. A,,,R ‘iD 

c concentration of the solute in the liquid T dimensionless tcmperaturc in the liquid 
metal nlctill 

L’h specific heat of the liquid metal T,(.r) Chebyshev polynomials 

n diffusion coeficicnt for the solute in the v dimensionless velocity in the liquid metal. 
liquid metal 

i? or it,,, heat or mass transfer coefiicient for 
thermai or SOILIUI sinks Greek symbols 

HQ Hartmann number, UN(nii() “’ I’ absolute viscosity of the liquid metal 
H(s) Heaviside function I or 0 for .t’ > 0 or & n~~gnetjc permeability ofthe liquid metal 

9 < 0, rcspectivcly it density of the liquid metal 

j dimensionless electric current density in (b dimensionless electric potential function 
the liquid metal 4 stream function for the liquid-metal 

k thermal cond~ictivit~ of the liquid metal motion in horizontal planes 
.lv interaction parameter, oK’:‘pQ Q angular velocity of cylinder’s rotation 

P dimensionless pressure in the liquid metal about its vertical axis. 

2, LlQUl~-METAL MOTION where bli, and (r are the magnetic ~errn~~bilj~y and 

fn this section wc treat the steady motion ofa iiquid 
metal with constant physical properties in an infinitely 
long. vertical cylinder which is rotating about its ver- 
tical axis with an angular velocity R, as shown in Fig. 
1” We use the cylindrical coordinates (Y, 0,:) with the 
J axis along the cylinder’s vertical axis and with the 
unit vectors i. 8, i. Thcrc is a steady. uniform, cxtcr- 
nally applied, horizontal magnetic field, f$, where 
+ = sin 0 i-t-cos fl o^ is ;I horizontal unit vector which 
is parallct to the radii al 0 = i ~$2 and B is the mag- 
netic Aus density. fn addition to the apptied magnetic 
field, there is an induced magnetic field produced by 
the electric currents in the liquid metal. The charac- 
tcristic ratio of the induced magnetic flux density to 
B is the magnetic Reynolds number R,,, = /(&II?‘, 

Flc;. I, Horizontal section of an iniinitcly long, vertical 
cylinder which is filicd with a iiquid metal and which is 
rotating about its vertioal axis in the prcsencc of a steady. 

uniform, horizontal. rxtcrtio!ly applied magnetic kid Ej. 

electrical conductivity of the liquid metal, while R is 
the inside radius of the cylinder. For molten sificon in 
a 20 cm diameter trucibte rotating at 0.t rad s ‘. 

R,,, = 0.00126, so that we neglect the induced magnetic 
field. 

In the momentum equation, the characteristic 
ratios of the electromagnetic (EM) body force to the 
inertial and viscous terms arc N and Wrr’, respectively, 
where .N = nB’ipR and Hti = ~~(~~~1~ ’ ’ are the 
interaction parameter and Hartmann number, respec- 
tivcly. Here p and jr are the density and viscosity ofthe 
liquid metal. For our s&con example with B = 0.2 T. 
N = 172, which is sufficiently large to neglect inertial 

efkcts. Thcrcfore the dimensionless equations govcrn- 
ing the fluid motion are 

0 = -V~+j~j+&~ ‘V’v, P*v = 0, (1a.b) 

j = -Vylt+vxj, V*j = 0, jkdf 

wher-c p. j, v and $ are the pressure. electric current 
density, velocity and electric potential function. nor- 
malized by aRR’B’. rrRRB, QR snd RR”& respec- 
tively. Equation (la) is the inertialess momentuni 
equation with the EM body force j x 3 and equation 
{ Ic) is Ohm’s law. whife equations ( 1 b) and (Id) 
gu~~~.~r~t~~ coilscrvatjon of mass and electric charge. 
For the present infinitely long cylinder. all variables 
except 4 arc independent of I, v = 1:,3+&, j. is the 
only non-zero component ofj and ~b equals a constant 
times z. For a long cylinder with electrically insulating 
ends, such as the crucible bottom, the present two- 
dimensional solution is realized except near the ends 
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and the end regions provide the current paths to com- 
plete the electrical circuit, provided that there is no 
net axial current. Here v x i is antisymmetric about 
the 0 = 0 plane, so that 4 is a constant for zero net 
axial current. 

We introduce a streamfunction $ such that 

we substitute the : component of Ohm’s law into the 
momentum equation and we eliminate the pressure in 
order to obtain a single equation governing $, 

V(V$) = Hu’(~*V)(~*VII/), (3) 

where 

The boundary conditions at the cylinder wall are 

l/9=0, tj+. at r=l. (4) / 

There are two regularity conditions to exclude sources 
and vortices at r = 0, but these are satisfied auto- 
matically by our non-singular series solution for +. 
For the present inertialess flow, the streamlines are 
symmetric about the radii at (I = 0 and at 0 = 7r/2, so 
that we need only consider a quarter of the cylinder 
with symmetry conditions at 0 = 0 and at H = n/2. 

We introduce a Fourier series in 0 with the appro- 
priate symmetry and we introduce a Chebyshev poly- 
nomial series in r. Since the Taylor series of $ only 
includes even powers of Y, the series is 

‘1’ R \i,, 

ti = C C &,,T2,,(r) cos (24, 
,, = (1 ,,I _ ” 

(5) 

where Tk(r) = cos [k arccos (r)] is the Chebyshev 
polynomial of order k. We apply the equation (3) at 
the GausssLobatto collocation points r, = cos (in/ 

2NR) and 0, = ,jn/2NH, for i = 1 to (NR- I) and j = 0 
to NU, and we apply the boundary conditions (4) at the 
same values of 0,. We solve the resultant linear, simul- 
taneous, algebraic equations for the (NR+ l)(NO+ I) 
values of &, using Gauss elimination. 

The asymptotic solution of the present flow prob- 
lem for Ha >> 1 was presented by Alemany and 
Moreau [8] and provides useful insights into our spec- 
tral solution for arbitrary values of Hu. For Hu >> 1, 

the cylinder’s interior is subdivided into an inviscid 
core region, Hartmann layers with O(Hu- ‘) thickness 
at r = 1 and side regions with Ar = O(HK”‘) and 
A0 = O(Ha- “) at r = 1 and (9 = 0 or 7~. In the core 
v = O(Hu ‘) and in the Hartmann layers 

L’,,~, = exp [HuJsin Ol(r- I)] +O(HK ‘). (6) 

Neglecting O(Hu~ ‘) velocities, only the fluid in the 

Hartmann layers and side regions rotates with the 
cylinder, while the core is at rest. Since the Hartmann 

layer thickness varies as ]sin 01~ ‘, the total azimuthal 
flow inside each Hartmann layer or side region is 
maximum at 0 = 0 or rc and is minimum at 0 = n/2 
or 3n/2. As 0 increases from 0 to n/2 or from x to 
3x/2, fluid must leave each Hartmann layer, and as 0 
increases from 7r/2 to rt or from 3rr/2 to 2n, an equal 
amount of fluid must enter each Hartmann layer. 
The flow circuit is completed by an O(Ha- ‘) velocity 
along magnetic field lines in the core between the 
Hartmann layers, so that the core velocity is 

v, = -Hu-‘rcos0(1-r’cos’ 0)-3’2f+O(Htrm2). 

(7) 

The side regions match the singular core solution (7) 
as r + I for 0 = 0 or 71 and the singular Hartmann 
layer solution (6) as 0 + 0 or 7~. Similar side regions 
have been treated by Roberts [9]. 

The streamlines from our spectral solution for arbi- 
trary Ha are presented in Fig. 2 for Ha = 40 and 
200. For Ha = 0, the flow is rigid body rotation with 
v, = 0, v(, = r, and $ = 0.5( I - r'), so that the stream- 
lines are simply concentric circles. For Ha = 40, the 
basic characteristics of the large-Ha solution have 
emerged but the velocity in the central region is not 
quite parallel to the magnetic field. The streamlines 
for Ha = 200 match all the characteristics of the large- 

(a) 

e+ 

(b) 

FIG. 2. Streamlines. (a) Ha = 40, $ = 0.005 k, fork = O-13. 
(b) Ha = 200, uj = 0.002 k, for k = O-1 1. 
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FIG. 3. Azimuthal velocity r,, vs r at 0 = 0 for various values 
of Hu. 

Ha solution and reveal how the side region matches 
the core velocity to product a strong circulation for 
/r cos 01 > 0.8. The magnitude of the circulation is 
reflected by the maximum value, $,,,;,,, which decreases 
as Ha increases. Since all flow must pass through 
the side region with Ar = O(Hu-“), we expect the 
circulation to vary as HK’ ’ and indeed I,!I~,,~ is within 
2% of 0.71 Ho “J for all Hu > 80. The values of z+, at 
II = 0 are presented in Fig. 3 for various values of Ha 

As Ha increases, the minimum value of 111, here remains 
very close to -0.1, so that the large negative values 
one might expect from the asymptotic solution (7) arc 
never realized. While the arbitrary-Ha solution shares 
many characteristics with the large-Hu solution, the 
former serves as a better basis for treating heat and 
mass transfer since it does not involve the infinite 
velocities which arise in the asymptotic solution 
because of the subdivision into separate flow regions. 

3. HEAT AND MASS TRANSFER 

The streamlines in Fig. 2 indicate that the flow with 
a transverse magnetic field is far from axisymmetric. 
In this section WC investigate the associated asym- 
metries in the tcmperaturc and solutal distributions 
for a steady, two-dimensional heat and mass transfer 
problem with some qualitative similarities to these 
transfers in Czochralski crystal growth. In an actual 
Czochralski growth of a silicon crystal, there is a 
vertical crucible wall at r = I. a horizontal crucible 
bottom at z = 0, a free surface at I = h for u < r < I, 
and the crystal-melt interface at z = h for 0 < r < u, 
where (I and h are the dimensionless crystal radius 
and melt depth, respectively. The crucible bottom is 
essentially adiabatic, while there is a nearly uniform 
heat flux into the melt from the vertical crucible wall. 
For (1 < I’ < I, the heat flux is primarily radial, i.e. the 
isotherms are nearly axial, although there is some 
axial heat flux associated with the radiation from the 
fret surface. Under the crystal for 0 < r < o, the heat 
turns to flow axially into the crystal which represents 
a thermal sink. 

For our two-dimensional heat transfer problem, 
there is a uniform. radially inward heat flux q at the 

cylinder wall. For Y < u. there is a volumetric heat 
transfer from the liquid equal to a heat transfer 
coefficient h times the elevation of the dimensional 
temperature T* above some reference temperature T,. 
This central heat loss corresponds in a very rough way 
to the heat transfer from the bulk of the Czochralski 

melt to the crystal. so that T,, corresponds roughly to 
the solidification temperature at the crystal face. The 
dimensionless heat equation is 

P+g+?J = V’T-BiH(u-r)T, (8) 

where the dimensionless temperature T = k( T* - T,,)/ 

qR, the Peclet number PC> = pc,,RR’/k, and the Biot 
number Bi = kR’/k, while k and ch arc the thermal con- 
ductivity and specific heat of the liquid metal, and 
H(.u) is the Hcaviside function. The boundary con- 
dition is 

iT 
(:,.=I, at r=l. (9) 

while the exclusion of thermal sources at r = 0 is taken 
cart of by our series solution. The temperature is not 
symmetric about any diameter, but T(r, O+n) = 

T(r.O), so that we riced only consider half the 
cylinder for 0 < 0 < 71. We again introduce a Fourier 
series in 0 and a Chebyshev polynomial series in r, 

I.\‘R / , , ,\‘O I , 
T = 1 Tdr) 1 B,,,,, ~0s (2mW 

,I = 0 II, 0 

YO 

+ 1 C,,,,, sin (21~20) 
,I,= I I 

WC apply the equation (8) at the same collocation 
points r,,. 0, and the boundary condition (9) at O,, 
except now ,j = 0 to (2NO-I). i.e. 0 d 0 < 7~. The 
linear equations for the 2 x NR x NO coefficients B,,,,,, 

C,,,,, are solved with Gauss elimination. 
For our mass transfer problem. we consider a con- 

taminant such as oxygen which enters the liquid metal 
with a uniform flux q,,, at the crucible wall, modelling 
a uniform ablation rate of the crucible by the melt. 
For r < a, there is a volumetric mass loss equal to a 
mass transfer coefficient h,,, times the elevation of the 
dimensional concentration C* above some reference 
value C,,. Again this roughly models the mass transfer 
of oxygen from the central melt region to the crystal 
face. Therefore our mass transfer problem reduces to 
our heat transfer problem with T replaced by the 
dimensionless concentration C = D(C* - C,,)/q,,,R. 

with the Peclet number replaced by the mass Peclet 
number Pe,,, = RR*/D and with the Biot number 
replaced by the Sherwood number Sh = h,,,R’/D, 

where D is the diffusion coefficient. The only difference 
between the two problems is that the diffusion 
coefficients for most dopants and contaminants in 
silicon arc several orders of magnitude smaller than 
silicon’s thermal diffusivity, k/pc,. so that the values 
of Pe,, are generally much larger than those of Pe. 
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Henceforth we will refer to the lines in the figures 
as isotherms, but they are also lines of constant 
concentration for the corresponding mass transfer 
problem. 

For steady-state heat transfer, the average of T for 
r < (I must be 2/u’Bi, so that the level of the tem- 
perature decreases as Bi increases. The results for 
Bi = 0.1, 1 .O and 10.0, and for several combinations 
of Ha and Pe indicate that the only essential effect of 
changing Bi is to change the level of the temperatures 
and not their distribution. Therefore we only present 
results for Bi = 1. while u = 0.4 for all the results 
presented here. The isotherms for Hu = 200 and 
PC = 25, for Ha = 200 and Pr = 200, and for 
Hu = 40 and PC = 200 are presented in Fig. 4. The 
isotherms for n < 0 < 27t are obtained by rotating 
each figure about the origin. For Ha = 0, the iso- 
therms are concentric circles corresponding to purely 
radial conduction through the liquid metal in rigid 
body rotation. The isotherms for Ha = 200 and 
PC = 25 arc still very close to those for Hu = 0. For 
Hrr = PC = 200, there is some distortion of the con- 
centric isotherms near r = 1 as heat is convected by 

the flows in opposite directions along the magnetic 

(a) 
cJ.0” ’ 

T=l3.9 

(b) 

FE. 4. Isotherms for Bi = 1.0, T= 12.0+0.1 k for each 
case. (a) Hu = 200, PC = 25 and k = 4 19. (b) Ha = 200, 
Pe = 200 and k = 3-19. (c) Ha = 40. Pe = 200 and k = 

O&13. 

field lines near 0 = 0 and U = rc. The isotherms for 
small values of Y are still close to the concentric circles 
for pure conduction because the fluid here is nearly 
stagnant, as indicated in Fig. 2(b). For Ha = 40 and 
Pe = 200, the isotherms are more distorted from con- 
centric circles because the circulation for Ha = 40 is 
three times as large as that for Ha = 200. The iso- 
therms are all skewed to the left by the flows in 
opposite directions along the magnetic field lines on 
opposite sides of the radius at 0 = x/2. In addition, the 

strong circulations for ]Y cos 01 > 0.5 are producing a 
more uniform temperature region with precisely the 
distortion of the isotherms one would expect for a 
strong local circulation. 

4. CONCLUSION 

Since the dimensionless circulation actually varies 

as Hc’:‘, RR is not the most realistic characteristic 
velocity for the Peclet number. A more realistic Peclet 
number would be PC’ = PC Hum “‘, so that 
Pe’ = 0.73 1,5.848 and 17. IO for the isotherms in Figs. 
4(a), (b) and (c), respectively. 

Perhaps the most striking aspect of the isotherms 

in Fig. 4 is that their deviations from the concentric 
circles for an axisymmetric temperature are smaller 
than one might expect from the extreme asymmetries 
in the flow and from the magnitudes of the Peclet 
numbers. For the heat and mass transfer, there are 
two competing effects of a transverse magnetic field. 
Without a magnetic field, the flow and heat transfer 
are axisymmctric. As the field strength is increased, 
the flow becomes strongly asymmetric, but it also 
decreases in magnitude. Once the field strength is 
sufficiently strong to produce an asymmetric flow, it 
has also suppressed the flow so much that the flow 
has relatively little effect on the heat and mass transfer. 

A number of experiments have shown that silicon 

crystals grown by the Czochralski process with a 
steady, transverse magnetic field have very uniform 
and controllable concentrations of oxygen and 
dopants. In addition, the striations produced by the 
rotation of the crystalizing surface in a slightly asym- 
metric thermal field are no worst than the cor- 
responding striations in crystals grown without a mag- 
netic field [4]. These experimental results are 
surprising because one would expect that a transverse 
magnetic field would produce an extremely asym- 
metric melt motion, and that the associated convective 
heat and mass transfer would produce very asym- 
metric temperature distributions in the melt. Our 
results demonstrate that the extremely asymmetric 
melt motions associated with a transverse magnetic 
field do not necessarily lead to large asymmetries in 
the temperature and solutal distributions. Clearly our 
two-dimensional model problems are only qualitative 
representations of a few physical phenomena also 
occurring in the complex, three-dimensional melt 
motion in an actual Czochralski process. Since our 
results support the promising experimental results for 
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the Czochralski growth of silicon crystals with a trans- 4. 
verse magnetic field, our future research will focus 
on extensions to more realistic three-dimensional 
models including the buoyant and thermocapillary 5. 
convections. 
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